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Abstract—Our work aims to aid in the development of an
open source data schema for educational interventions by im-
plementing natural language processing (NLP) techniques on
publications within What Works Clearinghouse (WWC) and the
Education Resources Information Center (ERIC). A data schema
demonstrates the relationships between individual elements of
interest (in this case, research in education) and collectively
documents elements in a data dictionary. To facilitate the creation
of this educational data schema, we first run a two-topic latent
Dirichlet allocation (LDA) model on the titles and abstracts of
papers that met WWC standards without reservation against
those of papers that did not, separated by math and reading
subdomains. We find that the distributions of allocation to these
two topics suggest structural differences between WWC and non-
WWC literature. We then implement Term Frequency-Inverse
Document Frequency (TF-IDF) scoring to study the vocabulary
within WWC titles and abstracts and determine the most relevant
unigrams and bigrams currently present in WWC. Finally, we
utilize an LDA model again to cluster WWC titles and abstracts
into topics, or sets of words, grouped by underlying semantic
similarities. We find that 11 topics are the optimal number of
subtopics in WWC with an average coherence score of 0.4096
among the 39 out of 50 models that returned 11 as the optimal
number of topics. Based on the TF-IDF and LDA methods
presented, we can begin to identify core themes of high-quality
literature that will better inform the creation of a universal data
schema within education research.

Index Terms—Data Schema, Education Research, Natural
Language Processing

I. INTRODUCTION

In the field of education, there is currently a gap between
research and practice. [6] NewSchools worked with Gallup
to ask a sample of 3,210 teachers, 1,163 principals, 1,219
administrators, and 2,696 students what they think of and
how they use education technology inside and outside of
the classroom. [10] They found that teachers, principals, and
administrators all trust teachers the most for recommendations
on education technology. Teachers ranked research papers low
on this list because they don’t place much trust in these reports
that were planned and funded by the companies themselves.
Teachers can also find these papers to be difficult to understand
because the researchers’ language is not necessarily the same
as the educators’ language. Laura Hamilton and Gerald Hunter
(2020) saw this same trend with educational interventions
as opposed to education technology - teachers tend to turn
to other teachers for suggestions on academic interventions.
[6] This shows a gap between research and practice because
while researchers are writing reports about tools to be used in

academia, educators are not fully translating this research into
practice, and are thus not using these tools in the classroom.

Another problem with education research is that the field
lacks a universal set of data standards and data schema.
[4] There are four main issues that arise from this lack
of uniformity. 1) Researchers tend to collect information
on schools based on their individual projects and interests,
often using particular or even proprietary terminology that
is not understood or defined consistently across the field.
2) Data collection occurs on a project-by-project basis and
is shared in inconsistent formats, yielding uninterpretable
datasets including closed, searchable databases. 3) Data that
is not publicly available may be collected throughout some of
these efforts, but it is rarely distributed in a comparable or
comprehensive way. 4) As researchers aim to keep up with
new approaches; old datasets, descriptions, and categories are
replaced, limiting the potential to evaluate trends over time.
The first step towards enabling interoperability between these
valuable, but unreadable, datasets is to standardize the data
itself. [4]

One potential solution to these problems in education is
the adoption of universally understood conceptual frameworks
for the replication and validation of research papers. The
PICO (Population, Intervention, Comparison, and Outcome)
process is a type of data schema used in health care for defin-
ing clinical questions and evaluating clinical interventions.
Successful adoption of these frameworks in the educational
setting would allow for comparisons between educational
interventions, and replication of these interventions would
ensure that their conclusions are legitimate. InnovateEDU,
a non-profit that wants to help close this gap between re-
search and practice in education, is working with our team
to build a data schema. This project is funded by the Bill
& Melinda Gates Foundation. With feedback from working
groups of researchers, educators, and practitioners, this schema
will consolidate current standards in education. In order to
facilitate the creation of this data schema, we implement NLP
techniques to discover different themes and important terms
that exist in educational research papers. Our work shows
how representative the data schema is of educational literature,
specifically from WWC and ERIC as these repositories are
managed by the U.S. Department of Education. This open
source schema, based on the models we form, would help
educators find the studies that could lead to more helpful or
useful changes in their students’ education.



II. RELATED WORK

In the field of education, Penuel et al. (2016) implement a
survey-based study on research use among K-8 instructional
policymakers sampled from urban schools and central offices
across the nation. [11] The study revealed several important
findings about how educational research was used by school
and district leaders in practice. Specifically, most respondents
cited using research for the purpose of decision-making,
and are most likely to access research through professional
associations and conferences rather than through individual
researchers or U.S. Department of Education databases, in-
cluding What Works Clearinghouse. Most useful research
selected by respondents are about instructional practices and
learning in the classroom, and also teaching and learning in
specific subject matter, which support our selection of math
and reading education as target subdomains. Respondents gen-
erally reported positive attitudes towards research regarding
the usefulness of research, but one third of them have concerns
about the potential political implications. Finally, respondents
were reported to be willing to use research for decision-
making, but felt they had limited access to the latest research
for their needs and largely doubted their abilities to interpret
the research results.

Before InnovateEDU works on developing their conceptual
framework for education, it is important to consider previ-
ous framework’s many advantages and disadvantages, as the
limitations of one schema can contribute to the creation of
another schema. Many of our aims for improving education
research through a standardized data schema have already
been successfully implemented in the field of health care. For
example, Carpenter et al. (2012) developed a framework for
articulating cancer comparative effectiveness for research data
needs. [3] The framework presented by Carpenter has since
served as a starting point for multiple frameworks that could,
when fully implemented, address comparative effectiveness
research needs, accelerate the pace of comparative effective-
ness research, and enhance the adoption of research findings
by the multiple stakeholders interested in improving patient
outcomes.

Building on Carpenter’s model, Hruby et al. (2016) de-
veloped a data schema for clinical research needs using
the expert-derived framework. [7] Three data sources, Clin-
icalTrials.gov, EHR data requests, and EHR SQL queries,
were sampled to obtain sentences and queries representing
typical clinical research needs. The obtained sample data were
analyzed and annotated semi-automatically through a natural
language processing-assisted process and one human encoder,
based on the original Carpenter model. The iterative annotation
process derived a modified and enriched data schema, which
was then evaluated by both a direct comparison of class
preservation and eight clinical researchers. Suggestions from
the eight evaluators were incorporated to construct a final
participant-enriched data schema. However, Hruby et al. also
found that limitations of this data schema included potential
bias regarding data sources and the ambiguity introduced by

abstracting medical concepts.
In addition to bias and ambiguity, there have been other po-

tential concerns in relation to the creation of a health care data
schema. Huang, Lin, and Demner-Fushman (2006) investigate
the limitations of the PICO framework, the most common
evidence-based schema currently in use in the health care
industry. [8] The authors found that PICO has been beneficial
overall, especially in regards to therapy-based interventions,
and has provided a clear structure in which to filter the natural
language between patient and provider. On the other hand,
the authors also delve into ways to improve PICO - most
importantly, Huang et al. found that situations which cannot be
translated into the PICO framework are systematically ignored
and under-reported in research. These limitations are important
to keep in mind in order to develop a more comprehensive and
inclusive data schema in education.

Finally, Erikson and Frandsen (2018) perform a rigorous
systematic review, according to AMSTAR and PRISMA stan-
dards, of the effectiveness of PICO as a literature search
strategy tool. [5] Researchers employed a rigorous search
strategy to query for relevant PICO framework assessment
studies across several major databases. They identified 2,163
records in total but only found three articles to be “eligible
for further review”. The three articles were then compared
on four aspects (study design, relevance assessment, choice
of comparator, and outcomes reported) and found to be quite
different. The results showed that the number of search blocks
and the inclusion of outcome-related terms would affect the
quality of the literature search. However, the systematic review
did not find a significant effect of this PICO search strategy
compared to the alternative PIC framework, PICOS frame-
work, SPIDER framework, and unguided search. The study
concluded that more research was needed to assess the effect
of using the PICO framework in the literature search.

III. METHODOLOGY

The goal of our project is to use text mining and topic
modeling to find the underlying language used in educational
research papers from two different clearinghouses, WWC and
ERIC. We use Term Frequency-Inverse Document Frequency
(TF-IDF) to find which words are most important to a paper in
a corpus of papers for each clearinghouse, and latent Dirichlet
allocation (LDA) to find the probabilities of allocating each
paper to each topic, or set of words, depending on the words
that appear in each paper.

For our preliminary analysis, we do this to see if these
distributions of probabilities are different between our two
corpora, or two clearinghouses, of papers. If this is the case,
then it is a sign that there are latent semantic differences
between the papers in the two corpora. This means that
educators will likely understand and interpret papers from
these two sources differently.

For our main analysis, we first find the TF-IDF scores for
all unigrams and bigrams in the overall WWC corpus. We then
divide our WWC corpus into mathematics and reading papers
to be analyzed separately. We do this because we expect the



most significant terms in our corpus will depend on the subject
of papers within that corpus. Finally, we run LDA on the full
corpus of WWC papers to see if there are core groups of
thematic structures in educational research papers that should
be represented in the data schema.

A. Corpus Building

The corpora built for both preliminary analysis and main
analysis consist of paper titles and abstracts collected from
the ERIC database. We selected the most recent papers for
both corpora whenever possible. For corpora that contain high-
quality research, the titles and abstracts of papers reviewed
by WWC are used. WWC focuses on identifying high-quality
research in order to answer the question: “what works in
education?” The What Works Clearinghouse Process Brief
describes the ratings every eligible study receives as follows:
[14]

• Meets WWC Design Standards Without Reservations:
Studies receiving this rating provide the highest degree
of confidence that the intervention caused the observed
effect.

• Meets WWC Design Standards With Reservations:
Studies receiving this rating provide a lower degree
of confidence that the intervention caused the observed
effect.

• Does Not Meet WWC Design Standards: Studies
receiving this rating do not provide confidence that the
intervention caused the observed effect.

Reviews of papers were downloaded from WWC directly.
We use the WWC dataset feature Study Rating to collect
papers that met WWC standards without reservations and the
ERIC API field ieswwcreviewed to extract papers that have
not been reviewed by WWC. Some corpora are subset further
into separate groups of math papers and reading papers based
on metadata indicators defined by WWC. This downloaded
dataset includes a feature Topic Mathematics to indicate that
a reviewed paper is about math, or Topic Literacy to indicate
that a reviewed paper is about reading.

Papers with an ERIC identification number and a math
tag and/or a reading tag would be pulled from the ERIC
API. When we needed to find papers that were not reviewed
by WWC but were about either math or reading, we used
the ERIC API to search for papers that had “Mathematics
Intervention” or “Reading Intervention” in the paper’s abstract.
The papers that were reviewed by WWC make up the WWC
corpus, while the papers that were not reviewed by WWC
make up the non-WWC corpus.

When comparing WWC and non-WWC corpora, we record
the distribution of intervention names that appeared in the
WWC corpus, then manually duplicate this distribution in the
non-WWC corpus whenever possible (see Table VII). This is
done by using the Intervention Name field from the WWC
reviews dataset. The names of interventions (ex. “Fraction-
Face-Off!”) are then individually searched for in the titles of
non-WWC papers pulled from the ERIC API and added to
our non-WWC corpus.

There are some limitations associated with our corpus
building process. WWC itself contains reviews of papers, and
does not always provide access to the papers themselves. For
this reason, the WWC corpus is limited to papers reviewed by
WWC that have an ERIC identification number and accessible
through the ERIC API. Due to copyright laws, all corpora are
also limited to only titles and abstracts instead of full length
papers.

B. Text Pre-processing

Each paper is represented by the title and abstract combined
as one string of text. All of the text was tokenized, or split
up into individual units that give meaning to the text. In the
reading corpus, we removed equal signs from the tokens, while
we kept the equal signs in the math corpus because it gives
the text meaning related directly to math. Before modeling, the
text was also lemmatized and stop words and punctuation were
removed. Lemmatization is the process of collapsing different
versions of the same word to a common lemma (ex. “ran” and
“run” both become “run”). Stop words include frequently used
words that do not have any meaning on their own (ex: “the”
and “and”).

C. TF-IDF Method

We use TF-IDF, or Term Frequency-Inverse Document
Frequency, to find a list of the most important unigrams and
bigrams within our corpus of documents. TF-IDF is incredibly
popular in the field of natural language processing. Beel et al.
(2016) found that of the more than 200 papers on research
recommender systems published over the last 16 years, 70%
implement a TF-IDF weighting system in their model. [1]

By assigning a relevance value to each word or word
pair, we can also examine the cardinality of words and how
one word ranks in relation to others. To improve graphical
readability, we convert these TF-IDF scores to Z-scores by
subtracting the mean and dividing by the standard deviation
for each word’s TF-IDF score averaged across all documents
in the corpus.

TF -IDF (i, j) = TF (i, j)× IDF (i) (1)

TF(i,j) =
frequency of word i in document j
total number words in document j

(2)

IDF(i) = log(
total number documents in corpus

number documents containing term i
) (3)

In order to better inform the creation of a data schema,
it is important to first understand what words make up the
vocabulary of education research in the present. By speaking
to the vernacular already in use, researchers are more equipped
to adopt a universal data schema and older papers become
more integratable. We aim to discover that vocabulary in the
following sections with the inclusion of TF-IDF.



D. LDA Model

While TF-IDF identifies a set of significant unigrams and
bigrams for documents in a corpus, the method does not
reveal the latent thematical structures of the corpus. To uncover
more useful insights, we proceed with the most widely used
statistical topic model, latent Dirichlet allocation (LDA), first
introduced by Blei et al. (2003). [2] LDA is a generative
probabilistic model based upon the assumptions that each
document in the corpus is a probability distribution of topics
and each topic is a probability distribution of words. Topics,
in the context of LDA, statistically represent the co-occurring
patterns of words in the corpus. Similar to principle component
analysis, LDA projects the corpus to a lower dimension
and thus enables the discovery and interpretability of latent
semantic meaning of a large collection of documents.

Mathematically, the LDA model first assumes there is a
fixed set of K topics in the corpus and each topic is a proba-
bility distribution of vocabulary φz , which is a multinominal
distribution drawn from a Dirichlet prior with hyperparameter
β. Then, for a document i in the corpus, it is generated by
first choosing a topic mixture θi, which is also a multinominal
distribution drawn from a Dirichlet prior with hyperparameter
α. The hyperparameters α and β control the amount of entropy
in the Dirichlet distributions. Next, for each word in document
i, first select a topic Zj from θi and then select the word Wj

from φzj . Therefore, for a document with N words, we can
express the marginal distribution of a document as a mixture
of topics:

P (W |α, β) =

∫
P (θ|α)(ΠN

n=1

∑
zn

P (Wn|Zn, β)P (Zn|θ))dθ

(4)
And the joint distribution of a document as a mixture of topics
can be expressed as:

P (θ,W,Z|α, β) = P (θ|α)ΠN
n=1P (Zn|θ)P (Wn|Zn, β) (5)

Therefore, according to Bayes theorem, the posterior proba-
bility distribution of a topic mixture can be formulated as the
following equation:

P (θ, Z|α, β) =
P (θ,W,Z|α, β)

P (W |α, β)
(6)

The ultimate goal of an LDA model is to infer the posterior
probability, which in this case is the conditional probability
distribution of latent topic mixtures given the observed doc-
uments in the corpus. With the help of Bayesian estimation
methods, such as variational inference and Gibbs sampling,
the model can generate a probabilistic topic mixture distri-
bution for each document in the corpus (θi) and a probability
distribution of words for each topic (φz). Thus LDA is helpful
for discovering the latent themes in a corpus.

However, since LDA is an unsupervised model, one weak-
ness of this approach is the lack of a measure to evaluate the
generated topic models. A longstanding challenge in building
LDA models lies in choosing the optimal number of topics K.
Traditionally, researchers rely on domain knowledge to choose

the number of topics, afterwards checking if words with high
probabilities for each topic meet their expectations. Due to
our limited expertise in the domain of educational research, we
decided to employ a less subjective metric called the coherence
score. The coherence score for one topic is computed as the
average cosine similarity between the top word context vectors
and the centroid vector of that topic. Further, the overall
coherence score is calculated as the aggregated mean over all
topic coherence scores. [12]

As LDA is a probabilistic model, each run of tuning
this model returns a different optimal number of topics. To
counteract the stochastic nature of this model, we tune the
optimal number of topics 50 different times. For each of these
50 runs, we set the search space for the number of topics to
be from two to 20. Of these 19 different models, we select the
one that returns the highest coherence score, as this model has
the optimal number of topics for that run. Once all 50 runs
are complete, we then select the most frequently occurring
optimal number of topics.

IV. RESULTS

For the corpus building of WWC research papers, 15,236
reviews of papers were initially downloaded from the WWC
database, covering 2,738 unique papers in total. We assume
that a unique citation indicates a unique paper. Of these unique
papers, 1,943 have a unique ERIC ID. Based on the topic tag
assigned by WWC discussed earlier, there are also 280 math
papers, and 553 reading papers in the WWC corpus. Tables
IV through VI in the Appendix show the distribution of study
ratings for the full WWC corpus, the math WWC corpus, and
the reading WWC corpus for our main analysis.

We then filter these 1,943 papers to just those that met
WWC standards without reservation because we expect the
greatest semantic differences to exist between the highest
quality papers from WWC and the general quality papers from
ERIC. This led to 88 math papers and 158 reading papers in
the WWC corpus being studied in our preliminary analysis.
Tables VII and VIII in the Appendix show the distribution
of papers with and without intervention names in our math
corpus and reading corpus for both WWC and ERIC.

A. Preliminary Analysis

For both the math corpus and the reading corpus, we run an
LDA model with two topics to demonstrate if the two different
sources of papers (WWC and non-WWC) predominantly fall
into two different topics. Tables I and II show the distribution
of allocation of papers for each topic in each corpus.

TABLE I
DISTRIBUTION OF MATH PAPERS INTO TOPICS

Topic 1 Topic 2
Non-WWC 49.3% 50.7%

WWC 26.9% 73.1%

Table I shows that in the math corpus, papers approved
by WWC without reservation appear to fall predominantly



TABLE II
DISTRIBUTION OF READING PAPERS INTO TOPICS

Topic 1 Topic 2
Non-WWC 55.5% 44.5%

WWC 41.6% 58.4%

(73.1%) in Topic 2, while papers that have not been reviewed
by WWC evenly fall into either Topic 1 or Topic 2 (49.3%
and 50.7% respectively). Alternatively, Table II shows that
within the reading corpus neither Topic 1 nor Topic 2 clearly
distinguishes papers approved by WWC without reservation
nor papers not reviewed by WWC, with approximately 40%
to 60% of papers from each clearinghouse being allocated to
each topic.

B. Main Analysis

First we discuss our TF-IDF results using the overall WWC
corpus. In the Appendix, Figure 1 presents the top 30 unigrams
and Figure 2 presents the top 30 bigrams overall. We also an-
alyze mathematics and reading papers from WWC separately.
Figure 3 expresses the top 20 unigrams for reading compared
to mathematics, and Figure 4 expresses the top 20 bigrams for
reading compared to mathematics. In Figures 3 and 4 of the
Appendix, blue bars denote common terms shared between
reading and mathematics papers, while red bars denote words
that only show up in reading papers, and green bars denote
that of mathematics papers.

Next we discuss our LDA results using the overall WWC
corpus. For 39 out of the 50 runs of tuning this model, the
highest coherence score was achieved by choosing 11 as the
optimal number of topics. The average coherence score of
these 39 models is 0.4096. Therefore, we choose to run an
11-topic LDA model on our full WWC corpus. Next we
generate the per-document topic assignment distribution and
the per-topic word assignment distributions and evaluate the
top 20 bigrams assigned to each topic. In the Appendix,
Figures V through XV present the top 20 bigrams that occur
in each topic, and Figure XVI demonstrates the number of
documents that are assigned to each topic. We summarize and
contextualize the TF-IDF and LDA findings in the conclusion.

V. CONCLUSIONS

We now discuss how the results of our TF-IDF and LDA
models can aid in the development of InnovateEDU’s data
schema. This open source data schema should alleviate the
four main issues that arise from the lack of a universal edu-
cational data schema: 1) inconsistent research terminology, 2)
inconsistent data collection, 3) non-inclusive data distribution,
and 4) high data turnover rates.

A. Preliminary Analysis

Our LDA preliminary analysis shows that, for mathematics
studies, WWC papers are strongly associated with Topic 2,
while non-WWC papers are equally associated with Topic 1
and Topic 2 (see Table I). This shows that there are strong

structural differences between math papers approved by WWC
and math papers not reviewed by WWC. It also makes sense
that about half of these non-WWC papers were allocated to
Topic 2 because even though these papers were not reviewed
by WWC at this time, that does not necessarily mean that they
cannot be accepted by WWC in the future.

Meanwhile, for reading studies, WWC and non-WWC pa-
pers are equally associated with Topic 1 and Topic 2 (see
Table II). This shows that these differences are not that strong
between reading papers approved by WWC and reading papers
not reviewed by WWC. These results imply that the language
used in high-quality papers on mathematics studies is different
from that used in papers on standard-quality mathematics
studies. Alternatively, the lexicon used in high-quality reading
papers is not that different from that used in standard-quality
reading papers. This also shows that there could be some
intrinsic differences between math and reading papers.

B. Main Analysis

Relating to unigrams with high TF-IDF scores, many of the
emerging words relate strongly to key words in the educa-
tion space; “student” is by far the most important unigram,
followed by “reading”, “school”, “teacher”, and “program”.
We also see many words related to randomized control trials
(RCTs), a common method used by papers reviewed by the
WWC; for example, “intervention”, “study”, “effect”, and
“control” are all in the top 20 for overall unigrams. This
finding is repeated in the unigrams broken up by mathematics
and reading, with the addition of words such as “reading”,
“writing”, and “literacy” appearing only in reading papers,
and words such as “mathematics”, “problem”, and ”result”
appearing only in mathematics papers.

Bigrams, on the other hand, begin to provide more detail; in
the overall corpus, “high school” is by far the most significant
bigram, followed by “student achievement”, “national board”,
“control group”, and “professional development”. Between
math and reading papers, demographic information, such as
“school district” and “high/middle/elementary school” are the
most important bigrams common among the two subdomains
studied. On the other hand, important bigrams that are unique
to reading include “reading recovery”, “significant difference”,
and “statistically significant”. Meanwhile, important bigrams
that are unique to mathematics include “problem solving”,
“student achievement”, and “grade [of] student”.

For both unigrams and bigrams, our TF-IDF analysis con-
firms the importance of three types of words in our WWC cor-
pus: 1) words that are intrinsic to education papers (“student”,
“school”, “teacher”), 2) words that refer to the type of study
being presented (“randomly assigned”, “control group”, “sta-
tistically significant”), and 3) words that suggest the subgroup
being studied (“grade”, “gender”, “state”, “school district”,
“high school”, “learning disability”, etc.). Based on these
findings, we recommend that InnovateEDU’s data schema
incorporate elements related to the students, the schools, and
the teachers involved in educational studies. It should also
incorporate elements related to the type of educational study



being presented and elements related to the group of students
being examined.

With our 11-topic LDA model, we find that the top bi-
grams that were common across all topics include words
that are intrinsic to education papers (“contain table”, “table
figure”, “result indicate”) and words that suggest the subgroup
being studied (“grade [of] student”, “middle school”, “high
school”). This supports our findings from TF-IDF scores that
participants’ demographic information of a study should be
incorporated as elements in the data schema. We also explore
which bigrams ranked highly in one topic but not so highly
in the others to try to identify what each topic represents
semantically. Table III summarizes our interpretation of each
topic based on the top 20 bigrams that show up in each topic.

TABLE III
WWC TOPIC SUMMARIES

Topic Documents
Per Topic

Theme
of Topic

1 371 Study Characteristics
2 2 Youth Intervention
3 48 Child Autism Intervention
4 2 Child Literacy Development
5 316 Higher Education
6 442 School Characteristics
7 84 Student Achievement
8 77 Language Development
9 104 Learning Disabilities
10 355 Reading Development
11 142 Early Childhood

We can identify which topics are most well-represented
in this corpus based on the number of documents that are
allocated to each topic. The most prevalent topics in this
corpus are Topic 6 (School Characteristics), Topic 1 (Study
Characteristics), Topic 10 (Reading Development), and Topic
5 (Higher Education) in descending order of the number of
documents in each topic. As a result, we recommend that these
four themes be the most represented in the data schema. This
universal schema should help resolve the issue of inconsistent
research terminology by documenting the definition of each
element in the data dictionary. By standardizing research ter-
minology with the validation of multiple working groups, this
schema should increase data interoperability and inclusivity,
thus alleviating the issues of inconsistent data collection and
non-inclusive data distribution. More work may be needed to
understand the evolution of education research; this can be
accomplished by tracking how the needs of the data schema
change after it has been deployed.

Regarding next steps, we plan to run and tune our LDA
model on titles and abstracts within the ERIC database using
the ERIC API and other top educational research journals
(ex. the Journal of Research on Educational Effectiveness
by SREE) using the Virgo API. This would allow us to
increase our sample size of papers by multiple orders of
magnitude (over 300,000 ERIC papers spanning 2013-2020).
This should help overcome the limitations of analyzing only
a small set of text for each paper instead of the full text

of each paper. By expanding our corpus of research papers,
we expect the optimal number of topics to increase and the
semantic meaning of each topic to change. If the WWC is
effectively representative of high-quality research within the
education sphere, these additional databases could give a more
all-encompassing representation of general education research
as it currently exists.
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APPENDIX

TABLE IV
BREAKDOWN OF FULL WWC CORPUS INTO STUDY RATINGS

Ineligible
for review

Does not
meet
WWC
standards

Meets WWC
standards
with
reservations

Meets
WWC
standards
without
reservations

Additional
source
not
reviewed

Not
rated Total

459 706 214 441 117 6 1943
23.62% 36.34% 11.01% 22.70% 6.02% 0.31% 100%

TABLE V
BREAKDOWN OF MATH WWC CORPUS INTO STUDY RATINGS

Ineligible
for review

Does not
meet
WWC
standards

Meets WWC
standards
with
reservations

Meets
WWC
standards
without
reservations

Additional
source
not
reviewed

Not
rated Total

38 86 44 86 25 1 280
13.57% 30.71% 15.71% 30.71% 8.93% 0.36% 100%

TABLE VI
BREAKDOWN OF READING WWC CORPUS INTO STUDY RATINGS

Ineligible
for review

Does not
meet
WWC
standards

Meets WWC
standards
with
reservations

Meets
WWC
standards
without
reservations

Additional
source
not
reviewed

Not
rated Total

61 188 105 170 29 0 553
11.03% 34.00% 18.99% 30.74% 30.74% 0.00% 100%

TABLE VII
BREAKDOWN OF MATH WWC CORPUS AND MATH NON-WWC CORPUS

WWC Corpus NonWWC Corpus
88 88

100% 100%
With Intervention

Names
Without Intervention

Names
With Intervention

Names height
Without Intervention

Names
29 59 16 72

32.95% 67.05% 18.18% 81.82%



TABLE VIII
BREAKDOWN OF READING WWC CORPUS AND READING NON-WWC CORPUS

WWC Corpus NonWWC Corpus
158 158

100% 100%
With Intervention

Names
Without Intervention

Names
With Intervention

Names height
Without Intervention

Names
98 60 55 103

62.02% 37.97% 34.81% 65.19%

Fig. 1. Top TF-IDF Unigrams for Papers in the WWC Corpus

Fig. 2. Top TF-IDF Bigrams for Papers in the WWC Corpus



Fig. 3. Breakdown of Top Math & Reading TF-IDF Unigrams

Fig. 4. Breakdown of Top Math & Reading TF-IDF Bigrams



Fig. 5. Top 20 Bigrams in Topic 1 of the WWC Corpus

Fig. 6. Top 20 Bigrams in Topic 2 of the WWC Corpus



Fig. 7. Top 20 Bigrams in Topic 3 of the WWC Corpus

Fig. 8. Top 20 Bigrams in Topic 4 of the WWC Corpus



Fig. 9. Top 20 Bigrams in Topic 5 of the WWC Corpus

Fig. 10. Top 20 Bigrams in Topic 6 of the WWC Corpus



Fig. 11. Top 20 Bigrams in Topic 7 of the WWC Corpus

Fig. 12. Top 20 Bigrams in Topic 8 of the WWC Corpus



Fig. 13. Top 20 Bigrams in Topic 9 of the WWC Corpus

Fig. 14. Top 20 Bigrams in Topic 10 of the WWC Corpus



Fig. 15. Top 20 Bigrams in Topic 11 of the WWC Corpus

Fig. 16. Distribution of Number of Documents per Topic


